Open Access Open Badges Review

Sensorimotor circuitry involved in the higher brain control of coughing

Stuart B Mazzone1*, Alice E McGovern1, Seung-Kwon Yang1, Ariel Woo1, Simon Phipps1, Ayaka Ando12, Jennifer Leech12 and Michael J Farrell2

Author Affiliations

1 School of Biomedical Sciences, University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia

2 The Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, 3010, Australia

For all author emails, please log on.

Cough 2013, 9:7  doi:10.1186/1745-9974-9-7

Published: 6 March 2013


There is an overwhelming body of evidence to support the existence of higher brain circuitries involved in the sensory detection of airways irritation and the motor control of coughing. The concept that cough is purely a reflex response to airways irritation is now superseded by the recognition that perception of an urge-to-cough and altered behavioral modification of coughing are key elements of cough disorders associated with airways disease. Understanding the pathways by which airway sensory nerves ascend into the brain and the patterns of neural activation associated with airways irritation will undoubtedly provide new insights into disordered coughing. This brief review aims to explore our current understanding of higher order cough networks by summarizing data from recent neuroanatomical and functional studies in animals and humans. We provide evidence for the existence of distinct higher order network components involved in the discrimination of signals arising from the airways and the motor control of coughing. The identification of these network components provides a blueprint for future research and the development of targeted managements for cough and the urge-to-cough.